CHEMISTRY OF COBALT BIS(DICARBOLLIDES). A REVIEW

Igor B. SIVAEV* and Vladimir I. BREGADZE

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Science, 28 Vavilov Str., 117813, Moscow, Russia; e-mail: bre@ineos.ac.ru

> Received January 29, 1999 Accepted March 12, 1999

We have the pleasure to dedicate this article to Stanislav Heřmánek on the occasion of his 70th birthday in recognition of his outstanding contribution to cage-boron chemistry.

Synthesis and chemical properties of cobalt bis(dicarbollides) [$common-3,3'-Co(1,2\text{-}C_2B_9H_{11})_2]^{-1}$ and [*commo-2,2'-Co*(1,7-C₂B₉H₁₁)₂]⁻ and their derivatives are reviewed. An attention is also paid to potential applications of cobalt bis(dicarbollides). A review with 132 references. **Key words**: Boranes; Carboranes; Cobalt; Sandwich complexes; Metallacarboranes.

1. COBALT BIS(DICARBOLLIDE) ANIONS

The synthesis of the first metallacarboranes was reported in 1965 (refs^{1,2}). The 18-electron low-spin d⁶ cobalt bis(1,2- and 1,7-dicarbollides) [*commo-* $3,3'-Co(1,2-C_2B_9H_{11})_2]$ [–] (1) and [*commo-2,2'-Co*(1,7-C₂B₉H₁₁)₂][–] (2) were among the very first metallacarboranes synthesized. At present their chemistry is one of the most elaborated in the metallaborane chemistry.

The classical approach to the synthesis of the $[3,3'-Co(1,2-C_2B_9H_{11})_2]$ ⁻ anion (Fig. 1) consists in the partial degradation of *ortho*-carborane with base into *nido*-[7,8-C₂B₉H₁₂]⁻ followed by its deprotonation to the [7,8-C₂B₉H₁₁]²⁻ dianion and reaction with $CoCl₂$. Usually the dicarbollide dianion is generated *in situ* by the treatment of $nido$ -[7,8-C₂B₉H₁₂]⁻ with sodium hydroxide

in aqueous solution^{3,4} (78% yield as the cesium salt and 74% yield as the potassium salt), with sodium hydride in tetrahydrofuran^{2,3} (72% yield as the cesium salt), or with potassium *tert*-butoxide in 1,2-dimethoxyethane⁵ (95% yield as the cesium salt). The same approach was used for synthesis of various derivatives of the cobalt bis(1,2-dicarbollide) (see below). In some cases the deprotonation with n-butyllithium in tetrahydrofuran was used⁶. The synthesis of **1** under mechanical activation of the solid reagents in a vibrating ball mill was also reported⁷. The electrolysis of the K[7,8-C₂B₉H₁₂] solution in dimethyl sulfoxide on the cobalt anode yields up to 54% of **1** isolated as the potassium salt 8 .

Crystal structure of Cs[3,3'-Co(1,2-C₂B₉H₁₁)₂] was determined⁹ in 1967; however, positions of the carbon atoms were not determined and hence the ligand orientation was not established. Later, the crystal and molecular structure of $(Et_3NH)[3,3'-Co(1,2-C_2B_0H_{11})_2]$ was determined¹⁰. The $[3,3'-Co(1,2-C_2B_9H_{11})_2]$ ⁻ anion consists of two $(C_2B_9H_{11})^2$ ⁻ (dicarbollide) units sandwiched around a formal Co^{3+} ion with the Co^{1} _B faces on the two ligands nearly parallel (dihedral angle 3.7°). The vector distances from cobalt to the C_2B_9 planes are virtually identical (1.466 and 1.476 Å), and the metal is approximately equidistant from the facial boron and carbon atoms although the Co–C distances are slightly shorter that the Co–B vectors (mean values 2.046(2) and 2.097(2) Å, respectively). The two $(C_2B_0H_{11})^2$ ligands are mutually rotated by 37°. This produces a staggered orientation of the carborane cages with the two C–C edges in close proximity, the molecule having approximate overall C_2 symmetry.

F_{IG} 1 Structure of cobalt bis(dicarbollide) anions

The $[3,3'-Co(1,2-C_2B_9H_{11})_2]$ anion has been characterized by the methods of UV (refs^{3,11}), IR (refs^{3,12}), Raman (refs¹²⁻¹⁴), NMR (refs^{15,16}), X-ray photoelectron¹⁷, and X-ray¹⁸ spectroscopy. Diamagnetic susceptibility of Cs[3,3′-Co(1,2-C₂B₉H₁₁)₂] was determined^{19,20}. Electrochemical behaviour of the $[3,3'-C_0(1,2-C_2B_0H_{11})_2]$ anion in various solvents (acetone, acetonitrile, 1,2-dimethoxyethane, tetrahydrofuran, dimethylformamide, dimethyl sulfoxide, butano-4-lactone, propylene carbonate) was investigated^{3,5,21-26}. Two stepwise reversible one-electron reduction transitions and a one-electron oxidation transition were revealed.

Reduction of **1** with 1 equivalent of sodium amalgam or cesium metal in 1,2-dimethoxyethane (DME) forms the brown cobalt(II) dianion $[3,3'-Co(1,2-C_2B_9H_{11})_2]^2$ ⁻ (3), which reverts back to yellow-orange 1 upon action of 0.5 equivalent of iodine in tetrahydrofuran²⁷. Compound 3 is paramagnetic 19-electron complex. The molecular structure of $[Cs(DME)₄]₂[3,3'-Co(1,2-C₂B₉H₁₁)₂]$ shows the carbon atoms occuping *transoid* rotational geometry about the cobalt center, consistent with the structure of isoelectronic nickel(III) bis(dicarbollide)²⁸. The dianion 3 has approximate C_{2h} molecular symmetry. Addition of water to the deprotonated material causes reversion to the parent anion 27 .

Refluxing **1** with 30% aqueous alkali results in the removal of one of the BH-vertices adjacent to the C–C edge forming the $nido$ -[3,9′-Co(1,2-C₂B₉H₁₁)- $(7'_{1}8'_{1}C_{2}B_{8}H_{11})|^{2}$ complex anion which gives *closo*-[3,1'-Co(1,2-C₂B₉H₁₁)(2',4'-C₂B₈H₁₀)]⁻ on oxidation with hydrogen peroxide^{29,30}. Reaction of **1** with CoCl₂ in 30% refluxing aqueous alkali results in the multinuclear cobaltacarbaboranes of the (3,6)-1,2-dicarbacanastide family $[(C_2B_9H_{11})C_0(C_2B_8H_{10})C_0(C_2B_9H_{11})]^{2-}$ and $[(C_2B_9H_{11})C_0(C_2B_8H_{10})C_0(C_2B_8H_{10})C_0(C_2B_9H_{11})]^{3}$ (refs^{21,31}).

Treatment of **1** with 1 equivalent of n-butyllithium in tetrahydrofuran results not in reduction, but in monodeprotonation with formation of purple $[1-Li-3,3'-Co(1,2-C_2B_9H_{10})(1',2'-C_2B_9H_{11})]$. The doubly deprotonated blue species $[1,1'-Li_2-3,3'-Co(1,2-C_2B_9H_{10})_2]$ is formed in the reaction with 2 equivalents of n-butyllithium27.

At present, a number of salts of the $[3,3'-Co(1,2-C_2B_9H_{11})_2]$ anion with various metal (Li⁺, Na⁺, K⁺, Cs⁺ (ref.³²), Mg²⁺, Ca²⁺, Sr²⁺, La³⁺, Cu⁺, Ag⁺ (refs^{16,33}), alkylammonium (Me₄N⁺, Me₃NH⁺, Et₄N⁺, Et₃NH⁺ (ref.³⁴), Me₃CNH⁺₃, Bu₄N⁺, dodecyl(trimethyl)ammonium, Me₂(Ph)NH⁺ (ref.³⁵), piperidinium, pyridinium, methenammonium, ethylene-1,2-diammonium, tris(2-hydroxyethyl) ammonium) cations, triphenylmethylium³³, and hydrazinium cations, as well as with protonated amino acids (L-arginine, L-ornithine, L-lysine, glycine, L-valine, L-leucine, L-phenylalanine, L-tryptophane), glucosamine, cinchonine, and amides (dimethylformamide, dimethylacetamide,

caprolactam) were prepared¹⁶. Thermal stability of the cesium^{36,37} trimethylammonium³⁶⁻³⁸, tetramethylammonium³⁶⁻³⁹, tetraethylammonium^{36,38} and pyridinium³⁶ salts was studied.

At present, synthesis of various salts and adducts of **1** was described: $[Zn(en)_2][3,3'-Co(1,2-C_2B_9H_{11})_2]_2$ (ref.¹⁶), $[Co(NH_3)_6][3,3'-Co(1,2-C_2B_9H_{11})_2]_3$ (ref.^{22}) , Na[3,3′-Co(1,2-C₂B₉H₁₁)₂]·2 Bipy (ref.⁴⁰), Na[3,3′-Co(1,2-C₂B₉H₁₁)₂]· 2 Phen (ref.⁴⁰), Co[3,3′-Co(1,2-C₂B₉H₁₁)₂] 4 Bipy (ref.⁴⁰), Co[3,3′-Co(1,2- $C_2B_9H_{11}$)₂]·4 Phen (ref.⁴⁰), $[(\eta^5-C_5H_5)_2Fe][3,3'-Co(1,2-C_2B_9H_{11})_2]$ (refs⁴¹⁻⁴³), $[(ethylene-bis(n⁵-4,5,6,7-tetrahydroinden-1-y)]M(H)$ $(PhNMe₂)][3,3'-Co(1,2 C_2B_9H_{11}$)₂] (M = Zr, Hf) (ref.⁴⁴), $[(\eta^5-C_5H_5)_2ZrMe][3,3'-Co(1,2-C_2B_9H_{11})_2]$ $(ref.35)$, $[(\eta^5-C_5Me_5)_2ThMe][3,3'-Co(1,2-C_2B_9H_{11})_2]$ $(ref.34)$, $[(\eta^5-C_5Me_5)_2-(2.2C_2B_9H_{11})_2]$ ThCH₂SiMe₃][3,3′-Co(1,2-C₂B₉H₁₁)₂] (ref.³⁴), [(η⁵-C₅Me₅)₂Th(H)][3,3′-Co(1,2- $C_2B_9H_{11}$)₂] (ref.³⁴), [Ir(CO)(PPh₃)₃][3,3'-Co(1,2-C₂B₉H₁₁)₂] (ref.³³), [(η ⁵-C₅H₅)- $Fe(\eta^6-1,4-x$ ylene)][3,3′-Co(1,2-C₂B₉H₁₁)₂] (ref.³³), $[M_0(\mu_3-S)(\mu_2-S_2)_{3}(Et_2NCS_2)_{3}]$ - $[3,3'-Co(1,2-C_2B_9H_{11})_2]$ (ref.⁴⁵). The $[3,3'-Co(1,2-C_2B_9H_{11})_2]$ anion is one of the least coordinating anions. The ligand field strength of a series of weakly binding anions for Fe(III) was estimated from $S = 3/2, 5/2$ spin state mixing in iron(III) porphyrins Fe X(TPP) (TPP = 5,10,15,20-tetraphenyl-21*H*,23*H*porfine) and was found 46 to increase in the series $[1\text{-}CB_{11}H_{12}]^- < \text{SbF}_6^- <$ $[3,3'-Co(1,2-C_2B_9H_{11})_2]^- < \text{AsF}_6^- < ClO_4^- < \text{BF}_4^- < I^- < \text{Br}^- < Cl^-$.

Toxicity and pharmacokinetics of K[3,3'-Co(1,2-C₂B₉H₁₁)₂]⁻ in tumorbearing rats were studied^{47,48}. The LD_{50} value was found to be 0.0875 mg/kg. Toxicity of H[3,3'-Co(1,2-C₂B₉H₁₁)₂] and its mutagenicity to Salmonella typhimurium and *Drosophila melanogaster* were determined⁴⁹.

Chemistry of cobalt bis(1,7-dicarbollide) was studied in a less extent. The $[2,2'-Co(1,7-C_2B_9H_{11})_2]$ ⁻ anion (Fig. 1) can be prepared by partial degradation of *meta*-carborane to the *nido*- $[7,9-C_2B_9H_{12}]$ ⁻ followed by its deprotonation with sodium hydroxide in aqueous solution or with sodium hydride in tetrahydrofuran and reaction of the $[7.9-C_2B_9H_{11}]^{2-}$ dianion formed with $CoCl₂$ (90 and 80% yield as cesium salt for the aqueous and non-aqueous method, respectively)³.

The $[2,2'-Co(1,7-C_2B_0H_{11})_2]$ anion has been characterized by the methods of UV, IR, and NMR spectroscopy³. Electrochemical behaviour of the $[2,2'-Co(1,7-C_2B_0H_{11})_2]$ ⁻ anion in acetone was investigated using the cyclic voltammetry method3, reversible one-electron reduction at –1.17 V (*vs* SCE) being revealed. Thermal stability of the cesium, trimethylammonium, tetramethylammonium, and tetraethylammonium salts of the [2,2′- $Co(1,7-C_2B_9H_{11})_2$] anion was studied³⁸.

2. DERIVATIVES OF [3,3′-Co(1,2-C₂B₉H₁₁)₂]⁻

2.1. Carbon Substituted Derivatives of $[3,3'-Co(1,2-C₂B₉H₁₁)₂]$

A general approach to synthesis of C-substituted derivatives of cobalt bis(1,2-dicarbollide) consists in preparation of the corresponding substituted *ortho*-carboranes, their degradation into the *nido*-7,8-dicarbaundecaborates, followed by deprotonation and reaction with cobalt(II) chloride. A mixture of two geometric isomers (racemic mixture and *meso* form) arises from initial carboranes bearing non-identical substituents (Table I). The attempt to prepare $[1,1',2,2'\text{-}Ph_4\text{-}3,3'\text{-}\text{Co}(1,2\text{-}C_2B_9H_9)_2]$ by this way was not successful⁵⁴

The same approach was used by Hawthorne *et al.*⁵⁵ to synthesize cobaltcarboranes containing C-bridged dicarbollide ligands (Fig. 2). Compounds with tri-, tetra-, and pentamethylene-bridged carbon-linked dicarbollide ligands were prepared $[1,1'-\mu-(\text{CH}_2)_n]-3,3'-\text{Co}(1,2-\text{C}_2B_0H_{10})_2]$ (*n* =3(**23**), 46%; *n* =4(**24**), 61%; *n* =5(**25**), 20%). In each instance, *meso* and racemic forms were obtained from the reaction of the diastereomeric-bridged carborane precursors and cobalt(II) chloride. Compounds $(Ph_3MeP)[1,1'-\mu-{(CH_2)_3}-3,3'-Co(1,2-C_2B_9H_{10})_2]\cdot 1/2 \text{ CH}_2Cl_2$ and $(\text{Ph}_3\text{MeP})[1,1'\text{-}L\text{-}\{(\text{CH}_2)_4\}\text{-}3,3'\text{-}\text{Co}(1,2\text{-}C_2\text{BaH}_{10})_2]$ have been characterized by single-crystal X-ray diffraction. The C_2B_9 faces in both the structures are noticeably non-parallel (the angles between normals to the two bonding planes are 7(2) and 9(2)° for **23** and **24**, respectively).

TABLE I

Carbon substituted derivatives of $[3,3'-Co(1,2-C_2B_9H_{11})_2]$ ⁻ prepared from the corresponding *ortho*-carboranes

^a Mixture of *meso* and racemic forms.

Aza-, oxa-, and thiaalkane-1,n-diyl-bridged carbon-linked cobalt bis(dicarbollides) $[1,1'-\mu$ -{TsN(CH₂CH₂)₂}-3,3′-Co(1,2-C₂B₉H₁₀)₂]⁻ (**26**)⁵⁵ (61%), $[1,1'+\mu$ -(CH₂OCH₂)-3,3'-Co(1,2-C₂B₉H₁₀)₂⁻ (27)⁵⁶ (65%), $[1,1'+\mu$ -(CH₂SCH₂)- $3,3'-Co(1,2-C_2B_0H_{10})$ ⁻ (28)⁵⁷ (44%) were prepared in the same manner. *Meso* and racemic forms of **26** were separated by HPLC techniques. The crystal structures of $(Ph_3MeP)[(\pm)-1,1'-\mu-(CH_2OCH_2)-3,3'-Co$ $(1,2-C_2B_9H_{10})_2$.¹/2 CCl₄ (ref.⁵⁶) and (Ph₃MeP)[*meso*-1,1'-µ-(CH₂SCH₂)-3,3'-Co(1,2-C₂B₉H₁₀)₂] (ref.⁵⁷) were determined by X-ray diffraction. The angles between normals to the C_2B_9 faces are 6.4 and 8.1° for 27 and 28, respectively. Oxidation of the cobalt bis(dicarbollide) thioether **28** with 3-chloroperoxybenzoic acid in methylene chloride results in the production of the corresponding sulfone $[1,1'-\mu-(CH_2SO_2CH_2)-3,3'-Co (1,2-C_2B_9H_{10})_2$ ⁻ (29)⁵⁷. The long-bridge cobalt bis(1,2-dicarbollide) $[1,1'-\mu-\{SCH_2CH_2OCH_2CH_2CH_2\}]\$ -2,2'-Me₂-3,3'-Co- $(1,2-C_2B_9H_9)_2]$ ⁻ (30) was prepared by similar way and its salts with macrocycle-complexed sodium or potassium cations were characterized by X-ray diffraction⁵⁸.

Another approach to synthesis of C-substituted derivatives of cobalt bis(dicarbollide) consists in its treatment with n-butyllithium followed by the reaction with alkyl halides²⁷. Using 1 equivalent of n-butyllithium, monosubstituted C-alkyl derivatives $[1-R-3,3'-Co(1,2-C_2B_0H_{10})(1',2'-C_2B_0H_{11})]$ $(R = CH_3 (31), n-C_6H_{13} (32))$ were prepared, whereas the disubstituted derivatives $[1,1'-R_2-3,3'-C_0(1,2-C_2B_9H_{10})_2]$ ⁻ (R = CH₃ (8), n-C₆H₁₃ (33), CH2OCH2CH2OCH3 (**34**)) were obtained using 2 equivalents of n-butyllithium. In the case of methyl and hexyl derivatives, a mixture of *meso* and racemic forms was obtained, but for $[1,1'$ -(CH₃OCH₂CH₂OCH₂)₂- $3,3'-Co(1,2-C_2B_0H_{10})$ ⁻ the ±-isomers are formed selectively in the reaction. Treatment of **31** with n-butyllithium and methyl iodide gives $[1,2-Me₂-3,3'-Co(1,2-C₂B₉H₉)(1',2'-C₂B₉H₁₁)]-$ (35) (30%) as well as the mixture of *meso* and racemic forms of **8**. The attempts to alkylate dihalogeno derivatives $[8,8' - X_2 - 3,3' - Co(1,2-C_2B_9H_{10})_2]$ failed²⁷.

The crystal structures of $(\text{Ph}_3\text{MeP})[1,1',2,2'\text{-Et}_4\text{-}3,3'\text{-Co}(1,2\text{-}C_2B_9H_9)_2]$
(ref.⁵), Na[1,1'-Ph₂-3,3'-Co(1,2-C₂B₉H₁₀)₂] 0.4 C₆H₅CH₃ (ref.⁵⁴), and $Na[1,1'-Ph_2-3,3'-Co(1,2-C_2B_0H_{10})_2]\cdot 0.4 C_6H_5CH_3$ $Cs[1,1'-(CH_3OCH_2CH_2OCH_2)_2-3,3'$ -Co(1,2-C₂B₉H₁₀)₂] (ref.²⁷) were determined.

Mono- and dicarboxylic acids $[1-HOOC-3,3'-Co(1,2-C_2B_9H_{10})(1',2'-1)$ $C_2B_9H_{11}$]⁻ (36) and [1,1'-(HOOC)₂-3,3'-Co(1,2-C₂B₉H₁₀)₂]⁻ (37) were prepared by the treatment of the mono- and dilithium derivatives with carbon dioxide. The corresponding acyl chlorides were prepared 59 by the reaction with $S OCl₂$.

2.2. Boron Substituted Derivatives of $[3,3'-Co(1,2-C_2B_9H_{11})_2]$

Substitution at boron atoms of the $[3,3^\prime\text{-}\mathrm{Co}(1,\mathrm{2}\text{-} \mathrm{C}_2\mathrm{B}_9\mathrm{H}_{11})_2]$ ⁻ anion is much more studied than substitution at carbon atoms. As a rule, substitution proceeds at the boron atoms with maximum electron density.

The halogenation of **1** by gaseous chlorine in ethanol–tetrachloromethane or nitrobenzene–tetrachloromethane mixture proceeds alternatively in both dicarbollide ligands yielding successively 8- (**38**), 8,8′- (**39**), 8,8′,9- (**40**), 8,8′,9,9′- (**41**), 8,8′,9,9′,12- (**42**), and 8,8′,9,9′,12,12′- (**43**) chloro derivatives⁶⁰. Complete resolution of mixtures of the derivatives containing 1–6 atoms of chlorine is possible by isotachophoresis61,62. The reaction of **1** with gaseous chlorine in a tetrahydrofuran–isopropanol solution in the presence of iron powder produces **39** (ref.63). The reaction of **1** with acidified aqueous sodium hypochlorite (HCl/NaOCl) results in the dichloro derivative **39** (ref.63). The reaction of **1** with *N*-chlorosuccinimide in refluxing tetrahydrofuran also gives **39**. γ-Irradiation of solution of **1** in a chloroform– benzene mixture gives **38**, whereas the γ-radiation-induced chlorination in the tetrachloromethane–nitrobenzene mixture results in formation of **38**, **39** or 43 depending on the dose absorbed⁶⁰.

 $[9,9'\text{-}Cl_2\text{-}3,3'\text{-}Co(1,2\text{-}C_2B_9H_{10})_2]$ ⁻ (44) and $[9,9',12,12'\text{-}Cl_4\text{-}3,3'\text{-}Co(1,2\text{-}C_2B_9H_9)_2]$ ⁻ (45) were prepared by a general synthesis from $CoCl₂$ and the appropriate chloro-*ortho*-carboranes⁶⁰.

The reaction of **1** with bromine in methanol at ambient temperature results in $[8-Br-3,3'-Co(1,2-C_2B_9H_{10})(1',2'-C_2B_9H_{11})]$ ⁻ (46) or $[8,8'-Br_2-3,3'-Co (1,2-C_2B_0H_{10})_2$ ⁻ (47) depending on the ratio of the initial reagents^{60,64}. The reaction of bromine with **1** in a refluxing tetrahydrofuran solution gives dibromo derivative **47** (ref.63). Treatment of **1** with an excess of bromine in glacial acetic acid solution at the reflux temperature produces the hexabromo derivative $[8,8',9,9',12,12'\text{-Br}_6-3,3'\text{-Co}(1,2\text{-}C_2B_9H_8)]$ ⁻ (48)^{3,32}. The reaction of **1** with *N*-bromosuccinimide in refluxing tetrahydrofuran gives the dibromo derivative **47** (ref.63). Radiolysis of **1** in a nitrobenzene–tribromomethane mixture results in the stepwise formation of **46** and **47** (refs^{64,65}). These derivatives were also obtained by the γ -irradiation of solution of 1 in a tribromomethane-methanol mixture⁶⁰. $[9,9'\text{-Br}_2\text{-}3,3'\text{-}\text{Co}(1,2\text{-}C_2B_9H_{10})_2]$ ⁻ (49) and $[9,9',12,12'\text{-}Br_4\text{-}3,3'\text{-}\text{Co}(1,2\text{-}C_2B_9H_9)_2]$ ⁻ (50) were prepared by a general synthesis from CoCl₂ and the appropriate bromo-*ortho*-carboranes⁶. Preparation of silver and triphenylmethylium salts of the hexabromo derivative was described³³.

The reaction of **1** with iodine in methanol gives [8-I-3,3′-Co(1,2- $C_2B_9H_{10}(1',2'-C_2B_9H_{11})$ ⁻ (51) or [8,8'-I₂-3,3'-Co(1,2-C₂B₉H₁₀)₂]⁻ (52) depending on the initial reagent ratio⁶⁰. Treatment of 1 with iodine in benzene at 80 $^{\circ}$ C in the presence of AlCl₃ gives the hexaiodo derivative $[8,8',9,9',12,12'$ -I₆-3,3′-Co(1,2-C₂B₉H₈)₂]⁻ (53)⁶⁰. The reaction of 1 with iodine monochloride in refluxing methylene chloride affords the hexaiodo derivative **53** (ref.67).

The chemical stability of 8,8′- and 8,8′,9,9′,12,12′-halogeno derivatives of the cobalt bis(1,2-dicarbollide) rises very sharply in comparison with the parent cobalt bis(1,2-dicarbollide). The conjugated acids of the hexachloro and hexabromo derivatives withstand contact with 10 M HNO₃ without any change for many weeks, whereas the unsubstituted conjugated acid decomposes in contact with 5 M HNO₃ in a short time^{16,68}. The 8,8'-dihalogeno derivatives are unchanged when refluxed in a tetrahydrofuran solution of NaNH₂ or when treated with a toluene solution of butyllithium at room temperature. The kinetic stability of this boron–halogen bond allows these compounds to withstand 3 M $HNO₃$ for periods in excess of 1 month⁶³.

The structures of the halogeno substituted cobalt bis(1,2-dicarbollides) $Cs[8-I-3,3'-Co(1,2-C_2B_0H_{10})(1',2'-C_2B_0H_{11})]$ (ref. 69), K[8,8′-Cl₂-3,3′-Co(1,2-C₂B₀H₁₀)₂] (ref.^{70}) , $(\text{PPN})[8,8'-\text{Cl}_2-3,3'-\text{Co}(1,2-\text{C}_2B_9\text{H}_{10})_2]$ (ref.^{63}) , $\text{Cs}[8,8'-\text{I}_2-3,3'-\text{Co}$ $(1,2-C_2B_9H_{10})_2$] (ref.⁷¹), $(Me_4N)[8,8',9,9',12,12'-Br_6-3,3'-Co(1,2-C_2B_9H_8)_2]$ (ref.⁷²), and Cs[8,8',9,9',12,12'-Br₆-3,3'-Co(1,2-C₂B₉H₈)₂] (ref.⁷³) were determined by X-ray diffraction. The dicarbollide ligands in the studied di- and hexahalogeno substituted cobalt bis(1,2-dicarbollides) have *transoid* conformation.

The complex $[8,8'-\mu$ -I-3,3'-Co(1,2-C₂B₉H₁₀)₂] (54) (Fig. 3) with a iodonium bridge between the dicarbollide ligands was prepared by heating 51 in benzene at 80 °C in the presence of AlCl₃. The complex 54 behaves as

a Lewis acid to form with Lewis bases a family of uncharged derivatives $[8-I-8'-L-3,3'-Co(1,2-C_2B_9H_{10})_2]$ (L = SMe₂ (55), 1,4-dioxane (56), NH₃ (57), $NMe₃$ (**58**), Py (**59**))^{74,75}. The ring-opening reaction of the dioxonium derivative **56** with $C_5H_{11}ONa$ in benzene at 60 °C gives $[8-(C_5H_{11}OCH_2CH_2OCH_2CH_2O)]$ $8'$ -I-3,3′-Co(1,2-C₂B₉H₁₀)₂][–] (60)⁷⁵. The reaction of 54 with nitriles at 70–80 °C without solvent (acetonitrile) or in benzene (benzonitrile, acrylonitrile) followed by hydrolysis of the intermediate formed gives the corresponding amides $[8-(\overline{RCONH})-8'-I-3,3'-\overline{C_0(1,2-C_2B_9H_{10})_2}]$ ⁻ $(\overline{R} = \overline{CH_3}$ (61) , C_6H_5 (62), CH=CH₂ (63))⁷⁶. Similar derivatives [8-Br-8'-L-3,3'-Co- $(1,2-C_2B_0H_{10})_2$] (L = SMe₂ (64), 1,4-dioxane (65)) were obtained by the reaction of 46 with AlCl₃ in benzene followed by treatment of the bromonium intermediate with the corresponding Lewis bases 74 .

It should be noted that formation of the 8,8′-bridged derivatives, especially the charge-compensated ones, is one of characteristic features of the cobalt bis(1,2-dicarbollide) chemistry. The possible mechanism of these reactions was described as "electrophile-induced nucleophilic substitution" (EINS), which is characterized by the following processes: (i) the electrophilic particle removes the terminal hydrogen from the most electron- rich B–H vertex; (ii) the transient vacancy at this B-vertex is then filled by the most nucleophilic or most abundant particle present in the reaction medium⁷⁷.

Heating **1** with paraformaldehyde in acetic anhydride in the presence of sulfuric acid results in the formation of bridged oxonium derivative [8,8'-μ-(CH₃O)-3,3'-Co(1,2-C₂B₉H₁₀)₂] (66). Another oxonium derivative $[8,8'-\mu-(C_2H_5O)-3,3'-Co(1,2-C_2B_9H_{10})$ ² (67) was prepared by heating 1 in acetic anhydride in the presence of sulfuric acid. The isolated yields of the oxonium derivatives were small (20 and 5% for the methyl and ethyl derivatives, respectively)⁷⁸. The methyloxonium derivative can be easily demethylated by Lewis acids. The structure of $[8.8'-\mu-(CH_3O)-3.3'-Co (1,2-C_2B_9H_{10})_2$ was confirmed by the X-ray structure analysis. The C_2B_9 pentagonal planes bound to the cobalt atom are non-parallel due to the short oxygen bridge (B–O = 1.50 Å, B(8)–O–B(8') = 92°). The dihedral angle defined by these planes was found⁷⁹ to be 28° . In the structure of $(Et₃MeN)[8,8'-\mu$ -O-3,3'-Co(1,2-C₂B₉H₁₀)₂], the monoatomic oxygen bridge causes the inclination of the C_2B_9 pentagonal planes by an angle of 28.3° $(B-O = 1.461 \text{ Å})^{80}$.

Compound $[8,8'-\mu-(CH_3CO_2)-3,3'-Co(1,2-C_2B_9H_{10})_2]$ (68) was prepared by heating 1 in a 4 : 1 acetic acid-acetic anhydride mixture with $HClO₄$ as a catalyst. Hydrolysis of **68** in refluxing aqueous ethanol gives the diol

 $[8,8'-\mu-(HO)_2-3,3'-Co(1,2-C_2B_9H_{10})_2]$ ⁻ (69)⁸¹. The reaction of 1 with dimethyl sulfate at 80 °C in the presence of $AICI₃$ results in the formation of $[8,8'-\mu$ -OSO₂O-3,3'-Co(1,2-C₂B₉H₁₀)₂⁻ (**70**). The structure of $(Me₄N)$ - $[8,8'-\mu$ -OSO₂O-3,3′-Co(1,2-C₂B₉H₁₀)₂] has been established by the X-ray diffraction. Both the dicarbollide ligands are 8,8′-bridged by sulfate ion (the distances B–O = 1.45 Å, O–S = 1.53 Å, S=O = 1.42 Å; the angels B–O–S = 127.6°, O-SO₂-O = 105.8°, and O=S=O = 116.5°). The dihedral angle between the C_2B_9 ligand planes equals⁸² 3.9°. The oxonium derivative $[8-(O(CH_2CH_2)_2O)-3.3'$ -Co(1,2-C₂B₉H₁₀)(1',2'-C₂B₉H₁₁)] (**71**) was prepared by heating **1** in 1,4-dioxane at 80 °C in the presence of dimethyl sulfate and sulfuric acid. According to the data of X-ray structure analysis, the dicarbollide ligands in **71** have *cisoid* conformation82. γ-Irradiation of **1** in methanol produces asymmetrically bridged $[8,8'-\mu-(CH_2O)-3,3'-Co (1, 2-C_2B_0H_{10})_2$ [[] (**72**)⁸³.

The reaction of the dimethylsulfoxonium salt $[(Me₂SO)₂H][3,3'-Co (1,2-C_2B_9H_{11})_2$] with S_2Cl_2 in refluxing dichloromethane followed by alkaline methanolysis results in formation of the 8,8′-bridged sulfide derivative $[8,8'-\mu-S-3,3'-Co(1,2-C_2B_9H_{10})_2]$ ⁻ (**73**)^{84,85}. The same product was prepared by refluxing 1 with elemental sulfur and $AICI_3$ in benzene⁸⁶. Treatment of **73** with dimethyl sulfate in acetone gives the uncharged sulfonium derivative $[8,8'-\mu-(CH_3S)-3,3'-Co(1,2-C_2B_9H_{10})_2]$ (74)^{84,85}. This was also prepared by refluxing $[8-(Me_2S)-3,3'-Co(1,2-C_2B_9H_{10})(1',2'-C_2B_9H_{11})]$ with AlCl₃ in benzene ($[8 \text{-Me}_2S-8'\text{-Cl}-3,3'\text{-Co}(1,2-C_2B_9H_{10})_2]$ is a by-product)⁸⁵. The alkylation of **73** with various alkyl halogenides in acetone affords high yields of the corresponding alkylsulfonium derivatives [8,8′-µ-(RS)-3,3′-Co- $(1,2-C_2B_9H_{10})_2$] ($R = C_2H_5$ (**75**), C_4H_9 (**76**), $CH_2C_6H_5$ (**77**), $CH_2CH=CH_2$ (**78**), CH₂C≡CH (79))^{85,87}. The [8,8′-µ-(HOOCCH₂S)-3,3′-Co(1,2-C₂B₉H₁₀)₂] acid was prepared by the reaction of the sulfide derivative with sodium chloroacetate in alkaline methanol. Esterification of the acid with methanol in the presence of sulfuric acid gives $[8,8'-\mu-(CH_3OOCCH_2S) 3,3'-Co(1,2-C_2B_9H_{10})$ ₂ (80)⁸⁵. Protonation of 73 with sulfuric acid in benzene or aqueous methanol generates a zwitterionic conjugated acid with a three-coordinated S-atom [8,8'-µ-(HS)-3,3'-Co(1,2-C₂B₉H₁₀)₂] (**81**) (p*K*_a 3.18, 50% ethanol)85,86. The conjugated acid is very reactive. Its reaction with acrylonitrile in benzene reminds of the Michael addition giving $[8,8'-\mu-(NCCH_2CH_2S)-3,3'-Co(1,2-C_2B_9H_{10})_2]$ (82). The reaction of with paraformaldehyde in methanol produces $[8,8'-\mu-(CH_3OCH_2S)-3,3'-Co$ $(1,2-C_2B_9H_{10})$ ²] (83). In both cases, the reactions have a reversible character. In an alkaline medium the products decompose back to the parent compound **73**. On the other hand, **83** is converted during prolonged standing

in methanol to the *S*-methyl derivative **74** (ref.85). The reaction of **73** with bromine in acetic acid yields an unstable [8,8′-µ-(BrS)-3,3′-Co- $(1,2-C_2B_0H_{10})$ ₂] derivative which is immediately converted with benzene in the presence of AlCl₃ into $[8,8'-\mu-(PhS)-3,3'-Co(1,2-C_2B_0H_{10})_2]$ (84)⁸⁵. The structures of the alkylsulfonium derivatives $[8,8'-\mu$ -(CH₃OOCCH₂S)-3,3'-Co- $(1,2-C_2B_9H_{10})_2$ (ref.⁸⁸) and $[8,8'-\mu-(HC=CCH_2S)-3,3'-C_0(1,2-C_2B_9H_{10})_2]$ (ref. 87) were determined by X-ray diffraction analysis. The angles between the C_2B_9 planes of the ligands equal 16.6 and 16.5° for **83** and 79, respectively $(B-S = 1.925$ and 1.918 Å for **83** and **79**, respectively).

The reaction of 1 with carbon disulfide in the presence of $AICI₃$ and hydrogen chloride produces $[8,8'-\mu-(HCS_2)-3,3'-Co(1,2-C_2B_9H_{10})_2]$ $(85)^{89,90}$. The molecular structure of $[8,8'-\mu-(HCS_2)-3,3'-Co(1,2-C_2B_0H_{10})$ has been determined by single-crystal X-ray diffraction $89,91$. The two dicarbollide ligands are 8,8′-S-CH-S-bridged (the B–S bonds are 1.85 and 1.90 Å, the S–C bonds are 1.71 and 1.62 Å). The carborane ligands are essentially parallel, the dihedral angle defined by the C_2B_9 planes being only 2.3°. The reaction of 85 with sodium borohydride in ethanol gives $[8,8'-\mu-(H_2CS_2)-3,3'-Co (1,2-C_2B_0H_{10})_2$ ⁻ (86)⁹⁰. Hydrolysis of 85 with 1 equivalent of alkali results in asymmetric breakage of the bridge giving [8-(HS)-8′-{H(O)CS-*S*}-3,3′-Co- $(1,2-C_2B_9H_{10})_2$ ⁻ (87)⁹⁰. Acid and alkaline hydrolysis of 85 in refluxing aqueous ethanol gives the bis(sulfanyl) derivative $[8,8'-(HS)_{2}-3,3'-C$ o- $(1,2-C_2B_9H_{10})_2$ [–] (88)^{89,90}. The oxidation of the bis(sulfanyl) derivative 88 with hydrogen peroxide in alkaline medium results in formation of the disulfide $[8,8'-\mu-S_2-3,3'-\text{Co}(1,2-C_2B_9H_{10})_2]$ ⁻ (89)⁹⁰. The disulfide 89 was also prepared by heating $Cs[3,3'-Co(1,2-C_2B_9H_{11})_2]$ with S_2Cl_2 in dichloromethane85. Methylation of the disulfide **89** with dimethyl sulfate in acetone gives $[8,8'-\mu-\{S(Me)S\}-3,3'-Co(1,2-C_2B_9H_{10})_2]$ (90) with the methyl group located on one of the sulfur atoms in the bridge. The treatment of **89** with bromine in acetic acid followed by reaction with $AICI₃$ in benzene produces $[8,8'-\mu-{S(Ph)S}-3,3'-Co(1,2-C_2B_9H_{10})_2]$ (91)⁸⁵. Refluxing the dimethylsulfoxonium salt $[(Me₂SO)₂H][3,3'-Co(1,2-C₂B₉H₁₁)₂]$ with acetic anhydride in benzene produces $[8-(Me₂S)-3,3'-Co(1,2-CoC₂B₀H₁₀)(3',1',2' C_2B_0H_{11}$)] (92)⁸⁵. The reaction of 1 with arenesulfenyl chlorides RSCl (R = C_6H_5 , 2-NO₂C₆H₄) in acetonitrile gives [8-(RS)-3,3'-Co(1,2-C₂B₉H₁₀)- $(1', 2' - C_2 B_9 H_{11})$ ⁻ (R = C₆H₅ (93), 2-NO₂C₆H₄ (94)). The disubstituted derivative $[8,8'-(4-NO_2C_6H_4S)_2-3,3'-Co(1,2-C_2B_9H_{10})_2]$ ⁻ (95) is formed with $4-\text{NO}_2\text{C}_6\text{H}_4\text{SCI}$ (ref.⁹²).

The reaction of 1 with H_2 SeO₃ in a benzene-acetic anhydride-sulfuric acid mixture followed by treatment with dimethyl sulfate produces

 $[8,8'-\mu$ -(CH₃Se)-3,3′-Co(1,2-C₂B₉H₁₀)₂] (96). Similar reaction with elemental tellurium gives $[8,8'-\mu-(CH_3Te)-3,3'-Co(1,2-C_2B_9H_{10})_2]$ (97). The isolated yields of the selenium- and tellurium-bridged cobalt bis(1,2-dicarbollides) were 8 and 3%, respectively⁷⁸.

The reaction of **1** with NaNO₂ in a benzene–sulfuric acid mixture pro-
uces mixture of $[8,8'-\mu-(NH_2)-3,3'-Co(1,2-C_2B_0H_{10})_2]$ (**98**) (47%), duces mixture of $[8,8'-\mu-(NH_2)-3,3'-Co(1,2-C_2B_0H_{10})_2]$ $[4,8'-\mu-(NH_2)-3,3'-\text{Co}(1,2-C_2B_9H_{10})_2]$ (99) (6%), and $[8,8'-\mu-(H_2NO-N,O]-3,3'-\text{Co}-1]$ $(1,2-C_2B_9H_{10})_2$] (100) $(21\%)^{78,93,94}$. Methylation of 98 with dimethyl sulfate in a benzene–water mixture in the presence of potassium hydroxide gives $[8,8'-\mu-(\text{MeNH})-3,3'-\text{Co}(1,2-\text{C}_2\text{B}_9\text{H}_{10})_2]$ (101), whereas the reaction in aqueous solution produces $[8,8'-\mu-(Me_2N)-3,3'-Co(1,2-C_2B_9H_{10})_2]$ (102)⁷⁸. Treat-
ment of 99 with dimethyl sulfate in alkaline ethanol produces ment of **99** with dimethyl sulfate in alkaline ethanol produces $[4,8'-\mu-(Me_2N)-3,3'-Co(1,2-C_2B_0H_{10})_2]$ (103)⁹³. The enantiomers of 99 and 103 were separated by means HPLC on γ-cyclodextrin93. Alkylation of **98** with chloroacetic acid in methanolic potassium hydroxide solution followed by esterification of the acid formed with methanol and sulfuric acid results in $[8,8'-\mu$ -(CH₃OOCCH₂NH)-3,3'-Co(1,2-C₂B₉H₁₀)₂] (**104**). The structure of the compound was determined by single-crystal X-ray diffraction. The dicarbollide ligands are linked by a monoatomic nitrogen bridge to which a (methoxycarbonyl)methyl group is bound (B–N bond lengths are 1.577 and 1.563 Å). The angle between the open pentagonal faces of the dicarbollide ligands is 26.0° (ref.⁹⁵).

Methylation of the oxime-bridged derivative **100** with methyl iodide in tetrahydrofuran in the presence of sodium hydride gives $[8,8'-\mu-(Me_2NO)-3,3'-Co(1,2-C_2B_0H_{10})_2]$ (105). The reaction of 100 with benzaldehyde and acetone in the presence of triethylamine produces the corresponding Schiff bases $[8,8'-\mu-(PhCH=NO-N,0)-3,3'-Co(1,2-C_2B_0H_{10})_2]$ (**106**) and $[8,8'-\mu-(Me_2C=NO-N,0)-3,3'-Co(1,2-C_2B_0H_{10})$ ₂] (**107**). The treatment of **107** with 10% potassium hydroxide in ethanol gives the parent oxime **100**. Reduction of **100** with zinc dust and acetic acid in benzene results in the bridge cleavage giving $[8-(H_3N)-8'-(HO)-3,3'-Co(1,2-C_2B_0H_{10})_2]$ (**108**). Methylation of this compound with dimethyl sulfate in ethanol in the presence of potassium hydroxide proceeds slowly giving mixture of $[8-(MeNH₂)-8'-(HO)-3,3'-Co(1,2-C₂B₉H₁₀)₂]$ (109) (10%), $[8-(Me₂NH)-8'-8]$ $(HO)-3,3'-Co(1,2-C_2B_9H_{10})_2$] (110) (17%), and [8-(MeNH₂)-8'-(MeO)-3,3'-Co(1,2-C₂B₉H₁₀)₂] (111) (57%). Compound 109 was also prepared by treatment of **100** with 10% potassium hydroxide in ethanol at 80 °C. The thermal disproportionation of **100** gives **110** (30%) and [8,8′-µ- $(MeN=CH-O-N, O)-3, 3'-Co(1, 2-C₂B₉H₁₀)₂]$ (112) $(40%)⁹⁴$.

The reaction of **1** with white phosphorus in benzene at 80 °C in the presence of AlCl₃ followed by NaOH-dimethyl sulfate produces $[8,8^{+}1+(Me)P]$ 3,3[']-Co(1,2-C₂B₉H₁₀)₂] (**113**) and [8-(Me₃P)-3,3[']-Co(1,2-C₂B₉H₁₀)(1',2'-C₂B₉H₁₁)] (**114**) isolated in 8 and 6% yields, respectively. The structure of the bridged derivative 113 has been established using X-ray diffraction analysis⁹⁶. The inclination angle between both C_2B_9 ligand planes was found to be 11.6°.

The reaction of $K[3,3'-Co(1,2-C_2B_0H_{11})_2]$ with benzenediazonium tetrafluoroborate in refluxing benzene⁴ or the decomposition of unstable benzenediazonium salt $(\text{PhN}_2)[3,3'-\text{Co}(1,2-\text{C}_2\text{B}_9\text{H}_{11})_2]$ in benzene⁹⁷ results in the 1,2-phenylene-bridged derivative $[8,8'-\mu-(1,2-C_6H_4)-3,3'-C_0 (1,2-C_2B_0H_{10})$ ₂]⁻ (115). This compound was also prepared by refluxing $Cs[3,3'-Co(1,2-C_2B_9H_{11})_2]$ with AlCl₃ in benzene⁸⁶. The other product of this reaction is the cobaltacarborane sandwich complex with two 1,2-phenylene bridges between the dicarbollide ligands [4,8′:8,4′-di- $-\mu$ -(1,2-C₆H₄)₂-3,3′-Co(1,2-C₂B₉H₉)₂]⁻ (116)⁹⁸. These compounds were erroneously identified as $[8,8'-\mu-(1,4-C_6H_4)-3,3'-C_0(1,2-C_2B_9H_{10})_2]$ and [8,8'-Ph₂-3,3'-Co(1,2-C₂B₉H₁₀)₂]⁻ (ref.⁹⁹). The structures of K[8,8'-µ-(1,2-C₆H₄)-3,3′-Co(1,2-C₂B₉H₁₀)₂] (ref.⁹⁷⁾ and Cs[4,8′:8,4′-di-µ-(1,2-C₆H₄)₂-3,3′-Co(1,2-C₂B₉H₉)₂] (ref.98) were determined by single-crystal X-ray diffraction. The phenylene ring planes in 116 are mutually inclined by 72° . The Cs⁺ cation is "sandwiched" between both phenylene rings.

The reaction of 1 with naphthalene at 80 $^{\circ}$ C in the presence of AlCl₃ produces the derivative with 1-methyleneinden-2-yl bridge $[8,8'-\mu-(CH_2-C_9H_6) 3,3'-Co(1,2-C_2B_9H_{10})_2]$ ⁻ (117). The structure of this derivative was unequivocally established by the X-ray diffraction study of (Me_4N) - $[8,8'-\mu-(CH_2-C_9H_6)-3,3'-Co(1,2-C_2B_9H_{10})_2]$ (ref.¹⁰⁰).

Synthesis of derivatives with the toluene and $1,4$ -xylene bridges^{$4,99$}, as well as the reaction of $[3,3'-Co(1,2-C_2B_9H_{11})_2]$ ⁻ with polystyrene¹⁰¹ were described. Mesitylene, durene, as well as diphenyl oxide, triphenylbenzene, and biphenyl do not react⁹⁹ with $[3,3'-Co(1,2-C_2B_9H_{11})_2]$. The phenyl derivative $[8-\bar{P}h-3,3'-C_0(1,2-C_2B_9H_{10})(1',2'-C_2B_9H_{11})]$ ⁻ (118) was prepared by the reaction of **1** with dimethyl sulfate in benzene at 80 °C in the presence of concentrated sulfuric acid. The other product of this reaction is **70**. The structure of $(Me_4N)[8-Ph-3,3'-Co(1,2-CoC_2B_9H_{10})(1',2'-CoC_2B_9H_{11})]$ has been established by the X-ray diffraction. The dicarbollide ligands in the structure have *transoid* conformation⁸². The diphenyl derivative $[6,6'-Ph_2-3,3'-Co(1,2-C_2B_9H_{10})_2]$ ⁻ (119) was prepared by the reaction of $\text{Na}_2[3\text{-}Ph\text{-}7,8\text{-}C_2\text{B}_9\text{H}_{10}]$ with CoCl₂ in tetrahydrofuran¹⁰². The hexamethyl derivative $[8,8',9,9',12,12'\text{-Me}_6-3,3'\text{-Co}(1,2-C_2B_9H_8)_2]$ ⁻ (120) was prepared by the reaction of the hexaiodo derivative **53** with methylmagnesium bromide

in refluxing tetrahydrofuran in the presence of $[Pd(Ph_2P),Cl_2]$ and CuI. According to the X-ray diffraction data, the dicarbollide ligands in the structure of $[8,8',9,9',12,12'$ -Me₆-3,3'-Co(1,2-C₂B₉H₈)₂]⁻ have *transoid* configuration⁶⁷. The reaction of 1 with nitrobenzene at 80 $^{\circ}$ C in the presence of AlCl₃ produces $[8-(PhNO₂-O)-3,3'-Co(1,2-C₂B₉H₁₀)(1',2'-C₂B₉H₁₁)]$ (121) isolated in 9% yield⁵⁴.

The reaction of Hg[3,3'-Co(1,2-C₂B₉H₁₁)₂]₂ with mercuric acetate in refluxing acetic acid gives¹⁰³ Hg[9,9′-(CH₃OOCHg)₂-3,3′-Co(1,2-C₂B₉H₁₀)₂]. The reaction of **1** with mercuric acetate, trifluoroacetate, or tetrafluoroborate in water gives $[8-Hg-3,3'-Co(1,2-C_2B_9H_{10})(1',2'-C_2B_9H_{11})]$ (**122**). Treatment of **122** with potassium chloride in aqueous acetonitrile results in K[8-(ClHg)-3,3'-Co(1,2-C₂B₉H₁₀)(1',2'-C₂B₉H₁₁)] (**123**). The same product was isolated from the mercuration of **1** in acetonitrile or acetic acid followed by treatment with potassium chloride. The disubstituted derivative K[8,9'(12')-(ClHg)₂-3,3'-Co(1,2-C₂B₉H₁₀)₂] (124) was prepared under the same conditions using the excess of the mercurating agent. Treatment of **124** with silver nitrate gives $[8,9'(12')$ -Hg₂-3,3′-Co(1,2-C₂B₉H₁₀)₂](NO₃) $(125)^{104}$.

It should be noted that the pictured above prismatic *cisoid* and antiprismatic *transoid* conformations are the limiting positions for possible free rotation of the dicarbollide ligands 85 . The prefered conformation of the dicarbollide ligands in non-bridged cobalt bis(1,2-dicarbollide) derivatives depends mainly on the electron interaction of substituents on the dicarbollide ligands and the dicarbollide carbon atoms. For instance, in structure of **118**, attraction between the slightly positive C–H vertices of the unsubstituted dicarbollide ligand and the slightly negative phenyl ring (attached to the most negative B(8) vertex) results in *transoid* conformation. On the other hand, in the structure of **71**, the repulsion between the analogous C–H vertices and the positively charged oxonium group in the dioxane substituent give rise to *cisoid* configuration. In some cases, the dicarbollide ligand conformation can be determined by steric interaction of substituents in the dicarbollide ligands.

All investigated single-atom bridged species (**66**, **79**, **83**, **104**, **113**) have prismatic *cisoid* conformation caused by geometric restrictions. The inclination angle decreases in the series of bridges $OR > NR₂ > SR > PR₂$. The same conformation was found for the diatomically bridged compound **115**. The compounds with triatomic bridges (**70**, **85**, **117**) have staggered (*cis* antiprismatic) conformation.

3. DERIVATIVES OF $[2, 2' \cdot \text{Co}(1, 7 \cdot \text{C}_2 \text{B}_9 \text{H}_{11})_2]$

Compound $[1,1',7,7'-Ph_4$ -2,2'-Co $(1,7-C_2B_9H_9)_2]$ ⁻ (126) was prepared in 50% yield in the reaction of $[7,9-\mathrm{Ph}_2-7,9-\mathrm{C}_2\mathrm{B}_9\mathrm{H}_9]^2$ with CoCl_2 in refluxing 1,2-dimethoxyethane–diglyme mixture54.

The reaction of **2** with formaldehyde in a mixture of concentrated hydrochloric acid and chloroform at 60 °C gives in high yield $[6,6'-\mu-(MeO)-2,2'-Co(1,7-C_2B_0H_{10})]$ (127) (Fig. 4). The oxonium derivative can be easily demethylated by Lewis bases, *e.g.* by methanol¹⁰⁵.

The reaction of **2** with elemental sulfur in benzene at 60 °C in the presence of AlCl₃ gives the sulfide derivative $[6,6'-\mu-S-2,2'-Co(1,7-C_2B_9H_{10})_2]$ (**128**). The structure of $(Ph_4P)[6,6'-\mu-S-2,2'-Co(1,7-C_2B_0H_{10})_2]$ has been established by single-crystal X-ray diffraction. The dihedral angle between both C_2B_9 pentagonal ligand planes was found¹⁰⁶ to be 12.2°. Methylation of the sulfide with dimethyl sulfate in aqueous solution produces $[6,6'-\mu-(MeS)-2,2'-Co(1,7-C_2B_0H_{10})]$ (129)¹⁰⁷. The alkylsulfonium derivatives $[6,6'-\mu-(RS)-2,2'-Co(1,7-C_2B_9H_{10})_2]$ $(R = C_2H_5$ (**130**), C_3H_7 (**131**), i-C₃H₇ (132) , n-C₄H₉ (133), n-C₆H₁₃ (134), CH₂CH=CH₂ (135)) were prepared by alkylation of the sulfide **128** with the corresponding alkyl halogenides in propan-2-ol. The reaction of **128** with chloroacetic acid in an aqueous sodium carbonate solution followed by esterification of the resulting acid with methanol and SOCl₂ produces derivative $[6,6'\text{-}\mu\text{-}(CH_3OOCCH_2S)\text{-}2,2'\text{-}Co (1,7-C_2B_0H_{10})_2$ (136)¹⁰⁵.

The reaction of 2 with NaNO₂ in a mixture of benzene and sulfuric acid results in $[6,6'-\mu-(H_2N)-2,2'-\text{Co}(1,7-C_2B_9H_{10})_2]$ (137) (p*K*_a 10.1, 50% aqueous ethanol). The treatment of the amine **137** with dimethyl sulfate in 10% so-

dium hydroxide gives $[6,6'-\mu-(Me_2N)-2,2'-Co(1,7-C_2B_0H_{10})_2]$ (138). The monomethylamino derivative [6,6'-µ-(MeNH)-2,2'-Co(1,7-C₂B₉H₁₀)₂] (139) was prepared by the treatment of a benzene suspension of $(Me_4N)[6,6'\text{-}\mu\text{-}(HN)-2,2'\text{-}Co(1,7-C_2B_0H_{10})_2]$ precipitated from 10% aqueous hydroxide with methyl iodide¹⁰⁵.

All prepared oxo-, thia-, and aza-bridged derivatives are enantiomeric mixtures: 6,11′-µ-*meso* isomers are completely missing in the reaction products. The resolution of the enantiomers of all bridged cobalt bis(1,7-dicarbollides) was performed by HPLC on β -cyclodextrin¹⁰⁸.

The reaction of **2** with white phosphorus in benzene at 80 °C in the presence of AlCl₃ followed by treatment with dimethyl sulfate in the presence of sodium hydroxide produces $[6,6'\text{-}\mu\text{-}(Me_2P)\text{-}2,2'\text{-}Co(1,7\text{-}C_2B_9H_{10})$ ₂] (140) and $[6-(Me_3P)-2,2'-Co(1,7-C_2B_9H_{10})(1',7'-C_2B_9H_{11})]$ (141) isolated in 8 and 6% yields, respectively. The structures of both compounds were determined by single-crystal X-ray diffraction⁹⁶. The dihedral angle between the C_2B_9 pentagonal ligand planes is 6.6°. The reaction of **2** with carbon disulfide in the presence of AlCl₃ and hydrogen chloride produces $[\mu$ -(HCS₂)-2,2[']-Co- $(1,7-C_2B_9H_{10})_2$ $(142)^{90}$.

An original approach to the synthesis of bridged derivatives of cobalt bis(1,7-dicarbollide) was proposed by Hawthorne *et al.* The reaction of 2 equivalents of $closo-1,8-C₂B₉H₁₁$ with sodium salt of pyrazole in benzene gives a mixture of $[10,10'-\mu-(pyrazol-1-yl-2-yliumyl)-(nido-7,9-C₂B₉H₁₀)₂]$ and [10,11'-µ-(pyrazol-1-yl-2-yliumyl)-(*nido-7*,9-C₂B₉H₁₀)₂]⁻ (*meso* and racemic forms, respectively). The reaction of this mixture with $CoCl₂$ in alkaline aqueous solution produces the corresponding mixture of $[6,6'-\mu$ -(pyrazol-1-yl-2-yliumyl)-2,2′-Co(1,7-C₂B₉H₁₀)₂] (racemic form) (143) and $[6,11'-\mu$ -(pyrazol-1-yl-2-yliumyl)-2,2′-Co(1,7-C₂B₉H₁₀)₂] (*meso* form) (144) which can be separated by preparative TLC techniques or by column chromatography¹⁰⁹. Compounds [6,6'-µ-(pyrazol-4-carboxylic acid-1-yl-2yliumyl)-2,2′-Co(1,7-C₂B₉H₁₀)₂] (145) and [6,11′-µ-(pyrazol-4-carboxylic acid-1-yl-2-yliumyl)-2,2[']-Co(1,7-C₂B₉H₁₀)₂] (146) were prepared in a similar way starting from methyl pyrazole-4-carboxylate^{109,110}. The molecular structures of $[6,6'-\mu-(pyrazol-1-yl-2-yliumyl)-2,2'-Co(1,7-C_2B_9H_{10})_2]$ and of [6,11'-µ-(pyrazol-1-yl-2-yliumyl)-2,2'-Co(1,7-C₂B₉H₁₀)₂] were determined from the single-crystal X-ray diffraction experiments^{109,110}. Due to the tight bridging of the planar pyrazole moiety, the bonding faces of the dicarbollide ligands are eclipsed. The angles between normals to the two bonding planes are 6.6 and 6.2° for **143** and **146**, respectively. The approach developed was used for the synthesis of the ⁵⁷Co radionuclidecontaining cobaltacarborane [µ-(pyrazol-4-carboxylic acid-1-yl-2-yliumyl)-

 $2,2^{\prime}$ -Co(1,7-C₂B₉H₁₀)₂] for radioimmunodiagnostics. The cobaltacarborane prepared was conjugated to anti-carcinoembryonic antigen monoclonal antibody T84.66 with full retention of immunological activity. Biodistribution studies in nude mice bearing carcinoembryonic antigen-producing tumors showed excellent localization of the conjugate in tumors¹⁰⁹⁻¹¹².

4. OTHER COBALT BIS(DICARBOLLIDES)

The unusual B,C′-bridged mixed-ligand cobalt bis(dicarbollides) $[1,8'-\mu-(RS)-2-(RS)-1,9'-Ph_2-3,3'-Co(1,2-C_2B_0H_8)(1',9'-C_2B_0H_9)]$ (R = Me (147), Et (**148**), and Bu (**149**)) were isolated as by-products (yields 10, 10, and 11%, respectively) from the synthesis of the corresponding cobalt bis(1,2-dicarbollides) [1,1′-(RS)₂-2,2′-Ph₂-3,3′-Co(1,2-C₂B₉H₉)₂]⁻ (reaction of [7-Ph-8-(RS)-7,8-C₂B₉H₁₀]²⁻ with CoCl₂ in refluxing 1,2-dimethoxyethane). The structure of $[1,8'-\mu-(\text{EtS})-2-(\text{EtS})-1,9'-\text{Ph}_2-3,3'-\text{Co}(1,2-\text{C}_2B_0H_8)(1',9'-\text{C}_2B_0H_9)]$ was established by single-crystal X-ray diffraction⁵³.

5. POTENTIAL APPLICATIONS OF COBALT BIS(DICARBOLLIDES)

Detailed analysis of possible applications of cobalt bis(dicarbollides) is beyond the scope of this review and will be mentioned only briefly. A more detailed recent review on this subject was given in ref.¹¹³.

The use of cobalt bis(1,2-dicarbollide) for solvent extraction of radionuclides is the most studied. This compound as well as its halogeno derivatives were found to be extremly robust, withstanding strong acids,

FIG. 5
Structure of [1,8'-
$$
\mu
$$
- (RS)-2-(RS)-1,9'-Ph₂-3,3'-Co(1,2-C₂B₉H₈)(1',2'-C₂B₉H₉)]

moderate bases, high temperatures, and intense radiation^{114,115}. The first application of the cobalt bis(1,2-dicarbollide) to solvent extraction of radionuclides was reported more than 20 years ago¹¹⁶. The principally new extraction reagent has been investigated in solvent extraction and so far, more than 100 papers and patents have been published on the subject. A variety of nuclides, both radioactive and stable $(Li^+, Na^+, K^+, Rb^+, Cs^+, TI^+;$ Ca^{2+} , Sr^{2+} , Ba^{2+} , Ra^{2+} , Pd^{2+} , Pb^{2+} ; lanthanides, *etc.*) can be successfully separated and isolated using cobalt bis(dicarbollide) and its derivatives. The most recent references on this subject are^{51,52,54,117-123}. Another direction in the cobalt bis(dicarbollide) application is its use in electrochemistry for transfer of cations from water to organic solvents and across lipid membranes, and as components of ion-selective electrodes¹²⁴⁻¹³⁰. Lithium cobalt bis(1,2-dicarbollide) was found to be an effective catalyst for the conjugate addition of silyl ketene acetals to hindered α , β-unsaturated carbonyl compounds and for the substitution of allylic acetates with various nucleophiles¹³¹⁻¹³².

The authors thank Russian Foundation for Basic Research (99-03-33073) for financial support.

REFERENCES

- 1. Hawthorne M. F., Young D. C., Wegner P. A.: *J. Am. Chem. Soc*. **1965**, *87*, 1818.
- 2. Hawthorne M. F., Andrews T. D.: *J. Chem. Soc., Chem. Commun*. **1965**, 443.
- 3. Hawthorne M. F., Young D. C., Andrews T. D., Hove D. V., Pilling R. L., Pitts A. D., Reinjes M., Warren L. F., Wegner P. A.: *J. Am. Chem. Soc.* **1968**, *90*, 8 79.
- 4. Francis J. N., Jones C. J., Hawthorne M. F.: *J. Am. Chem. Soc.* **1972**, *94*, 4878.
- 5. Viñas C., Pedrajas J., Bertran J., Teixidor F., Kivekäs R., Sillanpää R.: *Inorg. Chem*. **1997**, *36*, 2482.
- 6. Paxson T. E., Kaloustian M. K., Tom G. M., Wiersema R. J., Hawthorne M. F.: *J. Am. Chem. Soc*. **1972**, *94*, 4882.
- 7. Borisov A., Petrova L., Makhaev V.: *Proc. 1st Int. Conf. Mechanochem*. (C. Tkacova, Ed.), Vol. 2, p. 60. Cambridge Intersci. Publ., Cambridge 1993.
- 8. Erdman A. A., Zubreichuk Z. P., Shirokii V. L., Maier N. A., Oldekop Yu. A.: *Vestsi Akad. Navuk BSSR, Ser. Khim. Navuk* **1984**, *4*, 8 6.
- 9. Zalkin A., Hopkins T. E., Templeton D. H.: *Inorg. Chem*. **1967**, *6*, 1911.
- 10. Borodinsky L., Sinn E., Grimes R. N.: *Inorg. Chem*. **1982**, *21*, 1686.
- 11. Pavlík I., Maxová E.: *Proc. 3rd Conf. Coord. Chem.* (J. Gazo, Ed.), p. 247. Slovak Technical University, Bratislava 1971.
- 12. Kradenov K. V., Vasileva S. G., Volkov V. V., Kolesov B. A.: *Izv. Sib. Otdel. Akad. Nauk SSSR, Ser. Khim. Nauk* **1990**, *2*, 23.
- 13. Kolesov B. A., Kradenov K. V., Vasileva S. G., Volkov V. V.: *Izv. Sib. Otdel. Akad. Nauk SSSR, Ser. Khim. Nauk* **1990**, *6*, 64.

802 Sivaev, Bregadze:

- 14. Leites L. A., Vinogradova L. E.: *Proc. 1st All-Union Conf. Organomet. Chem*., Vol. 2, p. 184. Nauka, Moscow 1979.
- 15. Siedle A. R., Bodner G. M., Todd L. J.: *J. Organomet. Chem*. **1971**, *33*, 137.
- 16. Plešek J., Baše K., Mareš F., Hanousek F., Štíbr B., Heřmánek S.: *Collect. Czech. Chem. Commun*. **1984**, *49*, 2776.
- 17. von Binder H., Fluck E., Heřmánek S., Plešek J.: *Z. Anorg. Allg. Chem.* **1977**, *433*, 26.
- 18. Mazalov L. N., Volkov V. V., Dvurechenskaya S. Ya., Nasonova L. I.: *Russ. J. Inorg. Chem*. **1978**, *23*, 1023.
- 19. Volkov V. V., Ikorskii V. N., Dvurechenskaya S. Ya.: *Bull. Acad. Sci. USSR, Div. Chem. Sci*. **1983**, *32*, 219.
- 20. Volkov V. V., Ikorskii V. N.: *Izv. Sib. Otdel. Akad. Nauk SSSR, Ser. Khim*. *Nauk* **1981**, *6*, 38 .
- 21. Francis J. N., Hawthorne M. F.: *Inorg. Chem.* **1971**, 10, 863.
- 22. Geiger W. E., Jr., Smith D. E.: *J. Chem. Soc., Chem. Commun*. **1971**,8.
- 23. Geiger W. E., Jr., Smith D. E.: *J. Electroanal. Chem. Interfacial Electrochem.* **1974**, *50*, 31.
- 24. Geiger W. E., Jr., Bowden W. L., El Murr N.: *Inorg. Chem*. **1979**, *18*, 2358.
- 25. Krishtalik L. M., Alpatova N. M., Ovsyannikova E. V., Zubreichuk Z. P.: *Elektrokhimiya* **1991**, *27*, 154.
- 26. Krishtalik L. M., Alpatova N. M., Ovsyannikova E. V.: *Russ. J. Electrochem.* **1995**, *31*, 802.
- 27. Chamberlin R. M., Scott B. L., Melo M. M., Abney K. D.: *Inorg. Chem*. **1997**, *36*, 809.
- 28. Hansen F. V., Hazell R. G., Hyatt C., Stucky G. D.: *Acta Chem. Scand.* **1973**, *27*, 1210.
- 29. Jones C. J., Francis J. N., Hawthorne M. F.: *J. Am. Chem. Soc*. **1972**, *94*, 8391.
- 30. Jones C. J., Francis J. N., Hawthorne M. F.: *J. Am. Chem. Soc.* **1973**, *95*, 7633.
- 31. Francis J. N., Hawthorne M. F.: *J. Am. Chem. Soc.* **1968**, *90*, 1663.
- 32. Fanning J. C., Huff L. A., Smith W. A., Terrell A. S., Yasinsac L., Todd L. J., Jasper S. A., Jr., McCabe D. J.: *Polyhedron* **1995**, *14*, 2893.
- 33. Xie Z., Jelinek T., Bau R., Reed C. A.: *J. Am. Chem. Soc*. **1994**, *116*, 1907.
- 34. Yang X., King W. A., Sabat S., Marks T. J.: *Organometallics* **1993**, *12*, 4254.
- 35. Hlatky G. G., Eakman R. R., Turner H. W.: *Organometallics* **1992**, *11*, 1413.
- 36. Volkov V. V., Yurev G. S., Myakishev K. G., Vasileva S. G.: *Organomet. Chem. USSR* **1989**, *2*, 610.
- 37. Kozlova S. G., Volkov V. V., Vasileva S. G., Myakishev K. G., Sikorskaya G. V.: *Organomet. Chem. USSR* **1990**, *3*, 887.
- 38. Volkov V. V., Yurev G. S., Vasileva S. G., Myakishev K. G., Voronikhina G. S.: *Sib. Khim. Zh*. **1991**, *1*, 109.
- 39. Volkov V. V., Yurev G. S., Vasileva S. G., Voronikhina G. S., Myakishev K. G.: *Bull. Acad. Sci. USSR, Div. Chem. Sci.* **1990**, *39*, 1355.
- 40. Erdman A. A., Zubreichuk Z. P., Maier N. A., Shingel I. A., Kuchpa L. A., Oldekop Yu. A.: *Vestsi Akad. Navuk BSSR, Ser. Khim. Navuk* **1984**, *5*, 66.
- 41. Volkov V. V., Voronina G. S.: *Russ. Chem. Bull*. **1994**, *43*, 1715.
- 42. Volkov V. V., Ilinchik E. A., Voronina G. S., Volkov O. V., Ikorskii V. I.: *Russ. J. Inorg. Chem*. **1995**, *40*, 772.
- 43. Varnek V. A., Volkov V. V.: *Zh. Strukt. Khim.* **1995**, *36*, 709.
- 44. Grossman R. B., Doyle R. A., Buchwald S. L.: *Organometallics* **1991**, *10*, 1501.
- 45. Volkov V. V., Volkov O. V., Fedin V. P., Myakishev K. G., Voronina G. S.: *Eur. Conf. Boron Chem. EUROBORON*, Abstracts, p. 93. Universitat Autonoma de Barcelona, Barcelona 1997.
- 46. Reed C. A., Guiset F.: *J. Am. Chem. Soc*. **1996**, *118*, 3281.
- 47. Spryshkova R. A., Karaseva L. I., Brattsev V. A., Serebryakov N. G.: *Med. Radiologiya* **1981**, *26*, 6, 62.
- 48. Spryshkova R. A., Brattsev V. A., Sherman T. L., Stanko V. I.: *Med. Radiologiya* **1981**, *26*, 7, 51.
- 49. Miadoková E., Třebatická M., Podstávková S., Vlček D., Grolmus J.: *Acta Univ. Comen., Fac. Rerum Nat., Form. Prot. Nat*. **1991**, *15*, 49.
- 50. Matteson D. S., Grunzinger R. E., Jr.: *Inorg. Chem*. **1974**, *13*, 671.
- 51. Viñas C., Gomez S., Bertran J., Teixidor F., Dozol J.-F., Rouquette H.: *Inorg. Chem.* **1998**, *37*, 3640.
- 52. Viñas C., Gomez S., Bertran J., Teixidor F., Dozol J.-F., Rouquette H.: *Chem. Commun*. **1998**, 191.
- 53. Viñas C., Pedrajas J., Teixidor F., Kivekäs R., Sillanpää R., Welch A. J.: *Inorg. Chem*. **1997**, *36*, 2988.
- 54. Viñas C., Bertran J., Gomez S., Teixidor F., Dozol J.-F., Rouquette H., Kivekäs R., Sillanpää R.: *J. Chem. Soc., Dalton Trans*. **1998**, 2849.
- 55. Gomez F. A., Johnson S. E., Knobler C. B., Hawthorne M. F.: *Inorg. Chem.* **1992**, *31*, 3558.
- 56. Harwell D. E., Nabakka J., Knobler C. B., Hawthorne M. F.: *Can. J. Chem*. **1995**, *73*, 1044.
- 57. Nabakka J. M., Harwell D. E., Knobler C. B., Hawthorne M. F.: *J. Organomet. Chem*. **1998**, *550*, 423.
- 58. Pedrajas J., Bertran J., Gomez S., Viñas C., Teixidor F., Kivekäs R., Sillanpää R.: Ref.⁴⁵, p. 47.
- 59. Fino S. A., Benwitz K. A., Sullivan K. M., Lamar D. L., Stroup K. M., Giles S. M., Balaich G. J., Chamberlin R. M., Abney K. D.: *Inorg. Chem.* **1997**, *36*, 4604.
- 60. Matel L., Macásek F., Rajec P., Heřmánek S., Plešek J.: *Polyhedron* **1982**, *1*, 511.
- 61. Koval M., Kanianský D., Matel L., Macásek F.: *J. Chromatogr.* **1982**, *243*, 144.
- 62. Šimuničová E., Kanianský D.: *J. Chromatogr.* **1987**, *390*, 121.
- 63. Hurlburt P. K., Miller R. L., Abney K. D., Foreman T. M., Butcher R. J., Kinkead S. A.: *Inorg. Chem*. **1995**, *34*, 5215.
- 64. Matel L., Čech R., Macásek F., Heřmánek S., Plešek J.: *Radiochem. Radioanal. Lett*. **1978**, *35*, 241.
- 65. Matel L., Čech R., Macásek F., Heřmánek S., Plešek J.: *Radiochem. Radioanal. Lett*. **1977**, *29*, 317.
- 66. Siedle A. R., Bodner G. M., Garber A. R., Beer D. C., Todd L. J.: *Inorg. Chem*. **1974**, *13*, 2321.
- 67. Mortimer M. D., Knobler C. B., Hawthorne M. F.: *Inorg. Chem*. **1996**, *35*, 5750.
- 68. Matel L., Macásek F., Kamenistá H.: *Radiochem. Radioanal. Lett*. **1981**, *46*, 1.
- 69. Sivý P., Preisinger A., Baumgartner O., Valach F., Koren B., Matel L.: *Acta Crystallogr., Sect. C: Cryst. Struct. Commun*. **1986**, *42*, 30.
- 70. Kirillova N. I., Zhdanov A. S., Gusev A. I., Kirin V. N., Knyazev S. P., Sokolova T. V.: *Organometal. Chem. USSR* **1989**, *2*, 448.
- 71. Sivý P., Preisinger A., Baumgartner O., Valach F., Koren B., Matel L.: *Acta Crystallogr., Sect. C: Cryst. Struct. Commun*. **1986**, *42*, 28 .
- 72. DeBoer B. G., Zalkin A., Templeton D. H.: *Inorg. Chem*. **1968**, *7*, 2288.
- 73. Sivý P., Preisinger A., Baumgartner O., Valach F., Koren B., Matel L.: *Acta Crystallogr., Sect. C: Cryst. Struct. Commun*. **1986**, *42*, 24.
- 74. Plešek J., Štíbr B., Heřmánek S.: *Collect. Czech. Chem. Commun*. **1984**, *49*, 1492.
- 75. Selucký P., Plešek J., Rais J., Kyrs M., Kadlecová L.: *J. Radioanal. Nucl. Chem.* **1991**, *149*, 131.
- 76.Knyazev S. P., Kirin V. N., Chernyshev E. E.: *Dokl. Chem*. **1996**, *350*, 252.
- 77. Jelínek J., Štíbr B., Mareš F., Plešek J., Heřmánek S.: *Polyhedron* **1987**, *6*, 1740.
- 78. Plešek J., Heřmánek S., Baše K., Todd L. J., Wright W. F.: *Collect. Czech. Chem. Commun.* **1976**, *41*, 3509.
- 79. Šubrtová V., Petříček V., Línek A.: *Z. Kristallogr*. **1976**, *144*, 139.
- 80. Petřina A., Petříček V., Malý K., Šubrtová V., Línek A., Hummel L.: *Z. Kristallogr*. **1981**, *154*, 217.
- 81. Francis J. N., Hawthorne M. F.: *Inorg. Chem.* **1971**, *10*, 594.
- 82. Plešek J., Heřmánek S., Franken A., Císařová I., Nachtigal C.: *Collect. Czech. Chem. Commun*. **1997**, *62*, 47.
- 83.Matel L., Čech R.: *Radiochem. Radioanal. Lett*. **1977**, *28*, 67.
- 84. Plešek J., Heřmánek S., Janoušek Z.: *Chem. Ind*. **1974**, 108 .
- 85. Janoušek Z., Plešek J., Heřmánek S., Baše K., Todd L. J., Wright W. F.: *Collect. Czech. Chem. Commun.* **1981**, *46*, 2818.
- 86. Plešek J., Heřmánek S.: *Collect. Czech. Chem. Commun*. **1978**, *43*, 1325.
- 87.Vohlídal J., Plešek J., Sedláček J., Císařová I., Matějka P., Heřmánek S.: *Collect. Czech. Chem. Commun*. **1996**, *61*, 877.
- 88.Císařová I., Petříček V.: *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **1986**, *42*, 663.
- 89.Churchill M. R., Gold K., Francis J. N., Hawthorne M. F.: *J. Am. Chem. Soc.* **1969**, *91*, 1222.
- 90. Francis J. N., Hawthorne M. F.: *Inorg. Chem.* **1971**, *10*, 594.
- 91.Churchill M. R., Gold K.: *Inorg. Chem.* **1971**, *10*, 1928.
- 92.Knyazev S. P., Kirin V. N., Chernyshev E. A.: *Dokl. Akad. Nauk* **1993**, *333*, 732.
- 93. Plešek J., Grüner B., Heřmánek S., Fusek J., Votavová H.: *Collect. Czech. Chem. Commun*. **1994**, *59*, 374.
- 94. Plešek J., Rajabi F. H., Vangani V., Fusek J.: *Collect. Czech. Chem. Commun.* **1994**, *59*, 1326.
- 95.Císařová I., Malý K., Hummel L.: *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **1994,** *50***,** 198**.**
- 96. Franken A., Plešek J., Fusek J., Semrau M.: *Collect. Czech. Chem. Commun.* **1997**, *62*, 1070.
- 97. Shelly K., Knobler C. B., Hawthorne M. F.: *New J. Chem*. **1988**, *12*, 317.
- 98. Plešek J., Heřmánek S.: *Collect. Czech. Chem. Commun.* **1995**, *60*, 1297.
- 99.Korshak V. V., Kats G. A., Petrovskii P. V., Komarova L. G., Bekasova N. I.: *Organomet. Chem. USSR* **1989**, *2*, 518.
- 100.Franken A., Plešek J., Nachtigal C.: *Collect. Czech. Chem. Commun.* **1997**, *62*, 746.
- 101.Zakharkin L. I., Kats G. A., Komarova L. G.: *Plast. Massy* **1990**, *11*, 61.
- 102.Hawthorne M. F., Wegner P. A.: *J. Am. Chem. Soc*. **1968**, *90*, 896.
- 103.Usyatinsky A. Ya., Zhidkova O. B., Petrovskii P. V., Bregadze V. I.: *Russ. Chem. Bull.* **1994**, *43*, 671.
- 104.Knyazev S. P., Kirin V. N., Chernyshev E. A.: *Dokl. Akad. Nauk* **1993**, *333*, 61.
- 105.Plešek J., Grüner B., Holub J.: *Collect. Czech. Chem. Commun*. **1997**, *62*, 884.
- 106.Plešek J., Franken A., Fröhlich R.: *Collect. Czech. Chem. Commun.* **1997**, *62*, 57.
- 107.Plešek J., Grüner B., Fusek J., Votavová H.: *Collect. Czech. Chem. Commun.* **1993**, *58*, 2936.
- 108. Plešek J., Grüner B., Vaněk T., Votavová H.: *J. Chromatogr.* **1993**, *633*, 73.
- 109. Varadarajan A., Johnson S. E., Gomez F. A., Chakrabarti S., Knobler C. B., Hawthorne M. F.: *J. Am. Chem. Soc.* **1992**, *114*, 9003.
- 110. Hawthorne M. F., Varadarajan A., Knobler C. B., Chakrabatri S.: *J. Am. Chem. Soc.* **1990**, *112*, 5365.
- 111. Paxton R. J., Beatty B. G., Hawthorne M. F., Varadarajan A., Williams L. E., Curtis F. L., Knobler C. B., Beatty J. D., Shively J.: *Proc. Natl. Acad. Sci. U.S.A.* **1991**, 3387.
- 112. Beatty B. G., Paxton R. J., Hawthorne M. F., Williams L. E., Rickard-Dickson K. J., Do T., Shively J. E., Beatty J. D.: *J. Nucl. Med*. **1993**, *34*, 1294.
- 113. Plešek J.: *Chem. Rev.* **1992**, *92*, 269.
- 114. Makrlík E., Vaňura P.: *Talanta* **1985**, *32*, 423.
- 115. Rais J., Selucký P.: *Nucleon* **1992**, *1*, 17.
- 116. Rais J., Selucký P., Kyrs M.: *J. Inorg. Nucl. Chem.* **1976**, *38*, 1376.
- 117. Miller R. L., Pinkerton A. B., Hurlburt P. K., Abney K. D.: *Solvent Extr. Ion Exch*. **1995**, *13*, 813.
- 118. Navrátil J. D., Vaňura P., Jedináková-Křížová V.: *J. Radioanal. Nucl. Chem.* **1995**, *201*, 8 1.
- 119. Ilyutin V. V., Gelis V. M., Dzekun E. G., Malykh Yu. A.: *Radiokhimiya* **1995**, *37*, 92.
- 120. Nový P., Vaňura P., Makrlík E.: *J. Radioanal. Nucl. Chem*. **1996**, *207*, 237.
- 121. Vaňura P., Makrlík E.: *Collect. Czech. Chem. Commun.* **1998**, *63*, 338.
- 122. Vaňura P., Makrlík E.: *Collect. Czech. Chem. Commun*. **1998**, *63*, 2001.
- 123. Vaňura P., Stibor I.: *Collect. Czech. Chem. Commun*. **1998**, *63*, 2009.
- 124. Koryta J., Vanýsek P., Březina M.: *J. Electroanal. Chem*. **1977**, *75*, 211.
- 125. Koryta J.: *J. Electrochim. Acta* **1979**, *24*, 293.
- 126. Atwell R. J., Sridharam R., De Levie R.: *Proc. Indian Acad. Sci., Chem. Sci*. **1986**, *97*, 431.
- 127. Hanzlík J., Samec Z.: *Collect. Czech. Chem. Commun.* **1987**, *52*, 830.
- 128. Hanzlík J., Camus A.: *Collect. Czech. Chem. Commun.* **1991**, *56*, 130.
- 129. Popov A., Timofeeva S., Borisova T.: *Latv. Khim. Zh.* **1993**, 292.
- 130. Popov A., Timofeeva S., Borisova T.: *Latv. Khim. Zh*. **1993**, 564.
- 131. DuBay W. J., Grieco P. A., Todd L. J.: *J. Org. Chem.* **1994**, *59*, 6898.
- 132. DuBay W. J., Grieco P. A., Todd L. J.: *Tetrahedron Lett*. **1996**, *48*, 8707.